Better Use of the Landsat Temporal Domain: Monitoring Land Cover Type, Condition and Change

PI Curtis E. Woodcock

Co-I Mark A. Friedl

Co-I Pontus Olofsson

Department of Earth and Environment

Boston University

Use All Available Data

- Multitemporal Cloud Screening
- Phenology
 - Land surface characterization
 - Interannual variability in phenology
- Land cover change
- Land surface condition and trends
- Integration with Sentinel 2 (and maybe 1)

Amazon, Aug. 6th 1986, Path/Row = 2/67, Band 4, 3, and 2 composite

Amazon Scene Annual Land Cover Change Histogram

One remaining challenge concerns how to estimate the uncertainties of these Area estimates

Amazon Scene Annual Net Forest Change Histogram

Landsat Phenology

Landsat EVI Amplitude = "Deciduousness"

Landsat EVI Deviation from Mean = Interannual Variability

Observation Example

Cross-scale Results - One Pixel

Uncertainty:

Vertical bars = 1 S.D. across 60 trees Horizontal bars = 95% confidence intervals for Landsat

Spring Onset from Landsat vs 100% Budburst (Red Oak): 1982-2000

Regional Phenology

Landscape Phenology

Harvard Forest

Challenges/Opportunities

- Many things to be done and developed
 - Clouds, shadows, snow ... remain challenges
 - Phenology work just getting going
 - Time series analysis still very simple many new approaches to be tested/integrated
 - integrate data from other sensors
- Number of potential "products"
 - Clouds and shadows as well as snow and water masks
 - Phenology (intra and interannual)
 - Land cover change
 - Land cover condition and trends
 - Episodic events